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Abstract

We prove that there exist universal Taylor series -in the sense of Nestoridis- in the complement of a
square with respect to every center. Furthermore, for a weaker notion of universal Taylor series due to
Luh and Chui and Parnes, we prove that there exist universal Taylor series in the complement of the
closed unit disk with respect to every center. Overconvergence phenomena with respect to different
centers have been first investigated by W. Luh (Analysis 6 (1986) 191-207).
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let Q be an open subset of the complex plane. For a holomorphic furfcitio® (f €
H(Q)) and{ € 2, we denote by, (f, {) thenth partial sum of the Taylor development of
f, with center, i.e.,
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In a disk centered af with radiusR, (D({, R)), such that its closure is contained 4

the partial sums converge to the functibaniformly on D({, R). However outside,
subsequences of partial sums may have certain approximation properties. In this case we
say that the sequence of partial sums overconverges. The next two definitions have been
given in[7], see also [9,10].

Definition 1.1. Let Q2 be an open set aride Q2. A function f € H(Q) belongs to the class
U(Q, ), if for every compact seK C C \ Q with K¢ connected and for every function
h : K — C, continuous orK and holomorphic inK?, there exists a sequen¢g,} of
natural numbers such that

suplS;, (f, O(z) —h(z)| = 0
zeK

asn — +00.

Definition 1.2. A function f € H(Q) belongs to the clasE (Q) if for every K, h as in
Definition 1.1, there is a sequen¢g,} of natural numbers such that for evety c Q
compact the following holds:

supsuplS;, (f, O(z) — h(z)| — 0

(el zek

asn — +00.

The spaced (22) of holomorphic functions if2 becomes a complete metric space when
endowed with the topology of uniform convergence on compact subséts of

Elements of the clasg (L2, {) are called universal Taylor series with respedf,tm the
sense that the partial sun§s(f, {) approximate “everything we can hope for” outside
Let me mention that in the early 70s independently [4jfand Chui and Parnes [2], gave a
similar definition, where the compact $éts not allowed to contain pieces of the boundary
of 2 and we denote this class liy; (2, {). This restriction produces many differences
between the two classés(£2, {), U1(£2, {) see [8]. Observe thal’ (2, {) c U1i(£, ).
Elements of the clask (Q2) are also called universal Taylor series. We may also consider
the clasg/1(Q) if in Definition 1.2, instead oK (] 2 = ¢, the seK satisfies the property
K ﬂ§ = (. An immediate consequence is that) c U1(Q).

ObviouslyU (2) c U (£, {). However both classes are not always non-empty. Actually
the existence of universal Taylor series on some opef siepends on the s&itself. Let
me briefly mention, in this direction, the following known results:

(1) If Qis a simply connected domain, both clasggg2, ), U(2) areGs and dense
in H(Q) and if in addition{ is contained in the complement of a positive angle then
U, =Uforall { € Q, see[3,5,7].

(2) If Q is a non-simply connected domain then alw@y&?) = ¢ and if Q is also
contained in the complement of a positive angle th&®, () = 0, see [3,7].

However, there are non-simply connected domains which support universal Taylor series
with respect to one center. For exampl&ifs a connected compact set and alspK is
connected, then fo2 = C \ K and{ € Q, the clas/ (2, {) is G5 and dense i (Q2),
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thus non-empty, sgé] (see also [11] wheK is a singleton ). Also, in cage is any simply
connected domain then, as it is remarked abd@?) is G5 and dense i (), hence
ﬂgeg U(Q, () is residual (sinc&/ (2) C NeeU (L2, 0)), but it is not known in general if
U (L, Cl) =U (L, Cz) for all Cl’ é’z e Q.

In [6], Melas proved the following interesting result: there is a non-simply connected
domainQ with 0 € D C , (by D we denote the open unit diskj,\ € is infinite and
discrete such thdt (2, 0) # U (Q, {) for every{ € Q\ D # (. However, we do not know
if Neco U (L, {) is non-empty.

Sofaritis notknownifthereis a non-simply connected dongéuich thaﬂéGQ U,

# (. The purpose of the present work is to provide a class of non-simply connected domains
Q, forwhich the uncountable intersections of classes of universal Taylor series give aresidual
set of universal Taylor series with respect to any cefiter2. More precisely we prove the
following:

Theorem 1.3. Let K be a closed square with its interior aitl= C \ K. Then,although
U(Q) = ¥ se€[7], the classﬂgeg U(Q, ) is residual inH (£2), hence non-empty.

Actually we can extend Theorem 1.3 for eve€ywhereK is a closed polygonal line
with its interior. However we prefer to state Theorem 1.3 for a square, because the proof
is more transparent. After the proof of Theorem 1.3 is presented, we sketch the proof for
the general case of a polygon. Unfortunately, we were unable to prove a corresponding
result for the complement of the closed unit disk and so we ask the following: is it true that
Neeep U(C\ D, () is residual inH (C \ D), thus non-empty?

We are able to answer in the affirmative way the above question if we replace the class
U(C \ D, () with the weaker clas#/1(C \ D, {), where the compact s&t, in which the
approximation takes place, doesn’t contain pieces of the unit circle. So we establish the
next theorem.

Theorem 1.4. Let D be the open unit disk. TheadthoughU1(C \ D) = ¢ se€[7], the class
ﬂgec\ﬁ U1(C \ D, () is residual inH (Q), hence non empty.

2. Proof of Theorem 1.3

LetK = {z=x+iy: —-1<x<1, —1<y<1} and let? be the complement df i.e.
Q2 =C\ K. From now onK and( are fixed.

For the clarity of proof it is convenient to use the following definition, which has been
taken from [7].

Definition 2.1. Let L C Q. We say that a functiof)y holomorphic inQ2 belongs to the class
U(Q, L) if for every functionk : K — C, continuous orK and holomorphic ink?, there
exists a sequende,,} of natural numbers such that

supsup|s;, (f, O(z) —h(z)| — 0

(eL zek

asn — +o00.



4 G. Costakis / Journal of Approximation Theory 134 (2005) 1-10

At this point we would like to comment on the similarities and differences between the
classed/ (Q) (see Definition 1.2) and (2, L). The basic difference is that when we deal
with the clasdJ (£2), the approximative sequen¢g,} is the same for all the centers lying
on any compact st C €; therefore the sequen¢g, } depends only on the compact &et
and the functiorh. On the other hand, dealing with the cl@s&?2, L), it is obvious that the
sequencé/, } depends on the compact ¢efthe set where the centers are lying) as well.
However as we shall see below, if we impose certain topological and geometrical restrictions
on the sef2 then the classes coincide. L@the any open sef, C 2 be a compact set and
{ e L. By only using the definitions of the class€$Q), U (L, {), U(Q, L) (observe that
Definitions 1.1, 1.2 and 2.1 can be given for any operfjetie have

UQ) CcUQ L) CUD.

If Qis a simply connected domain which is contained in the complement of a positive
angle and because of the previous inclusion and (1) (see Introduction), we conclude that for
any compact set C Q, the classe#/ (), U(£2, L) coincide. The situation in non-simply
connected domains turns out to be rather different. It is known that for any non-simply
connected domaif2 the clasd/ (Q) is empty. On the other hand, we shall show below that
for Q being the complement of a closed square and for certain compadt set®, the
classU(Q, L) is G5 and dense irH (£2).

Let us now proceed with the proof of Theorem 1.3. Consider the four (closed) quadrants
of the plane and then take the intersection of each one®ithat is

1 =0QN{z=x4+iy: x>0, y=>0},
Q=0QN{z=x+iy:x<0, y=0},
Q3=0N{z=x4iy:x<0, y<0},
Qr=0QN{z=x+iy: x>0, y<O0}.
For everyu = 1, 2, 3, 4, consider a sequence of compact 1¢i$)f Q, such that
Qu=U, Ly,

In particular, we may define the compact sbﬁsas follows.

. . 1 1)
Ly = Qu[ o +iy:lxl<p, |y|<p}ﬂ{x+zy:|x| <142 bl < 1+;}

foru=1,2,3,4andp=1,2,3,....
Take a countable collection of all polynomials with coefficient®in- i O and consider
an enumeration of thenyy, f2,... . Letus define the set

1
E(j,s,n,p, ) =1 f € H(Q) : supsup|S,(f, () — f;j@)] < -
geL‘;zeK s

forj,s,p=123,....,n=0,1,2,...andu=1,2, 3,4
Now, it is not difficult to prove, sef9,7], the following.
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Lemma 2.2. (1) U(Q, L) = (;N,U,E(. s, n, p, p) and
(2 E(j, s, n, p, ) is open inH (L)
foreveryu=1, 2, 3,4andp=1,2,3,....

Observe that if the sét) E(j, s, n, p, p) is dense inH (), then because of Lemma 2.2
and Baire’s category theorem, we obtain that thel 52, Lﬁ) is Gy and dense irf (),
foreveryu =1, 2, 3,4andp = 1, 2, 3,... . At this point let us see how we can finish
the proof of Theorem 1.3, provided thai €2, Lﬁ) is G5 and dense irH (£2). Actually, it is
enough to observe that:

(1) ﬂjzl ﬂ;"zl U(Q, Lf,‘) is G5 and dense iif (), as countable intersection 6f; and
dense sets and

(2) M=t LU @, L) € Mpmt Neeg, U O = Nren U, D).

Thus, it only remains to prove the following.

Lemma 2.3. For everyu = 1, 2, 3, 4 and everyj, s, p>1the setl J,E(j, s, n, p, p) is
dense inH (Q).

Proof. Let f € H(Q), L C 2 compact and > 0. We look for a functiorg € H(Q) and
a natural numbet >0 so that

suplf(z) —g@)| <¢ 1)
zeL
and
1
supsup|S,(g, O(z) — fi@)| < —. (2)
leLlzeK S

We may consider without loss of generality that 1. By Runge’s theorem there exists
a rational functionp having no pole other than at; € Q \ (L U K), such that

supl /() — $(2)| < 3 @3)
zeL
and
1
suplfj(z) — ¢(2)| < 2 (4)
zekK s

Observe that for every e L}, and choosing a pointv; in the bounded connected
component of2 \ (L U K) (sinceL C Q is compact, we may assume tiat\, L has a
bounded connected compon&hsuch thatk C V) so that,w; belongs to the line joining
1+i, —1—1i,wehave

sup|Su (¢, O(z) — P(2)| - 0 )
zek

asn — oo.
We want to replace the previous limit, see (5), by the uniform limit for{adl L},. In
order to do that, we shall make the final choicedaqr.
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Let us define

zek

whered is chosen such that for evefye L}, we have
K c D(, Ry) and wj ¢ D(C, Ry). @)
By using Cauchy'’s estimates and (6), (7) we obtain that

sup suplS, (¢, O(z) — ¢(2)]

CeL}) zekK
oo
SURck 1z — (I
< Z sup  sup [¢(w)| sup eR—m ®)
m=n+1LeL} [w={ <R leLl 4

The last term in the previous inequality tends to Gias> co, since we can easily see
that there is O< 6 < 1 such that

and thus the series in (8) is dominated by a geometric one. From the above we conclude
that SURcz1 SURck 1S, (¢, O (z) — p(z)| — 0 asn — oo, so we can fixn such that

1
sup sup|S, (¢, ) (2) — ¢(2)| < 3 9)
eL] zeK S
Take any point1 € K° and letR be such that

DI R)()K=¢ (10)

for every( e L}.
Let us also fix a positive numbet > 0 such that

. |e 1
&1 <min{ =, — 1. (12)
su&eL% sup.cx 1z—(|

3s ZZ:O R™

By Runge’s theorem and (10) we can find a rational functidmaving a pole at;,
satisfying

sup |p(z) — g(2)| < e1. (12)
zeLUUgueL%D(C,R)
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Cauchy’s estimates imply that

sup sup| Sy (¢, O(z) — Su(g, H(2)]

{eL}zeK

", SUR¢p1SUR xlz=qm
<sup sup [gw) - gw)l Y ——— .

leLl lw—={I<R m=0

(13)

Combining (9), (11) and (13) we get

2
supsup|S,(g. O(2) — P(2)| < 3, (14)
QEL% zek N

From relations (4) and (14) it is straightforward that

1
supsup|S, (g, O(2) — fj @) < T (15)

{eL}zeK
Finally, (3), (12) and (13) imply

suplf(z) — g(@)| <. (16)

zel

Sinceg € H(£2) and because of (15), (16) the result follows. This completes the proof
of Lemma 2.3. Thus the proof of Theorem 1.3 is finishedl]

Now we would like to comment on the main idea of the proof and how our method can
be extended to the case of the complement of a polygon. The crucial step in our approach
is the division of the domaig into four regions2;, i=1, 2, 3, 4 such that:

the maximum distance betwe&nand every compadtj) CQ,ieemaflz—w|:ze€
K, w e L'} is attained o (K), w(Lip), wherez(K) is the same for all compact subsets
of Q;. Actually z(K) is exactly one of the four vertices of the square and of cog(&e
depends only on the domaép}, i=1,2,3,4.

After that, we are allowed to chose the pole of the rational fundfi@ppropriately, so
that we can control the quantity sug |5, (¢, O)(z) — ¢(z)| uniformly for all { € Li, as
n — o0.

Let us now sketch briefly the crucial step of the proof of a generalization of Theorem 1.3,
in case we replace the square with a polygon hawingrtices. For every two vertices
consider the corresponding segment joining the two vertices. For every such segment, take
its middle point and draw the line which is perpendicular to the segment and passing through
the middle point. The collection of these lines divides the complement of the polygon into
some “regions”. For each one “region” consider an exhaustive family of compact sets. We
have to observe that for every compact lsetvhich we select from the same exhaustive
family, the maximum distance betwekrand the polygon is always attained at the same
vertex of the polygon. Of course, to different “regions” there correspond different vertices.
After that, the proof for the case of a polygon follows the lines of the proof of Theorem 1.3
with minor modifications and the details are left to the reader.
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3. Proof of Theorem 1.4

Fix {{,} a countable dense setD . For everym = 1,2, 3... we define the countable
set

(= {ip}ﬂ{éeﬁ“ > 14 2m_1}.
Observe that
o0 o0 1 o
D(’", ):C\D. 17)
glpzl Pr2m+1

Let us definek,, = {z : |z|<1— %}, form =1,2,3... .

Definition 3.1. Consider anyL C C \ B_c:ompact. We say that a holomorphic function
f € H(C\ D) belongs to the clags:(C \ D, K, L) if and only if for everyh : K,, — C,
continuous orkK,, and holomorphic irKy, there is a sequendg, } of natural numbers such
that

sup sup [S;, (f. () = h(z)| > 0

(el zeKy

asn — +4o00.

We want to show that the S8, o\ 5 U1(C \ D, () is residual inH (C \ D). For that, it
is enough to prove the following:

Lemma 3.2. (i) The following inclusion holds.

(0.¢] [e e - N 1 o
N mU1<C\D,Km,D<p,2m—+1)) c () Ui\ D.D.

m=1p=1 {eC\D

(ii) The se(_1 N2y U1(C\ D, K, D}, 5=7)) is G and dense it (C \ D).

Let us remark that, because of (17) the above inclusion is obviously true. So it only
remains to prove part (ii) of Lemma 3.2. In view of Baire’s theorem, part (ii) of Lemma 3.2
will be true, if the following holds.

Lemma 3.3. Foreverym = 1,2, 3... fixany{(m) = { such that{| > 1+ ﬁ Then
foreverym = 1,2, 3...the set/1(C\ D, K,n. D(. 5.7)) is G5 and dense itH (C\ D).

Proof. Take an enumeration of the polynomiglswith coefficients inQ +i Q, and define
the set

_ 1
E(m, j,s,n)=1g€ HC\D): sup  sup|S,(g, w)(z)— fj@)] <[
weD({, i) €Km

for everym, j, s >1 andn >0.
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Then, it is standard to prove that

Uy <C\5, Kn. D (C, 2m—1+1)) = UE@m.j.s.n

j=1s=1n=0

and thatE (m, j, s, n) is open inH(C \ D), see[7]. Thus, because of Baire’s category
theorem and in order to finish the proof of Lemma 3.3, it suffices to prove that for every
j.s=1,2,... thesel ;2o E(m, j,s,n)is dense ind (C \ D).

For that, fix f € H(C \ D), j,s € {1,2, ...} and consider any compact detc C \ D
ande > 0. We look for a functiorg € H(C \ D) and an € N such that

suplf(z) —g@)| <e (18)
zeL
and
1
sup  sup|Sy(g, w)(z) — fi ()] < 5 (19)
weD({, ztg) “€Km

Let us define the following function:
h(z) = fj(2), z € Kn,
h(z) = f(2), z € L.

Fix the pointw, on the unit circle so that, is the intersection of the unit circle with the
line joining { with 0.

By using Runge’s theorem we can approximaten K,, U L by a rational functiorg
with no pole other than at, such that

suplf(z) —g@)| <e (20)
zeL
and
1
sup [g(z) — fi(@)] < % (21)
€Ky S

We turn our attention to the differeng€z) — S, (g, w)(z), which we want to estimate for
w € D(, Wlﬂ)- Cauchy estimates and the fact that for everyg D((, TIH) the point

w, is not contained in the closed digk — z| <|{| + 1 — 5, imply that

sup  supg(z) — Su(g, w)(2)l

weD((, gy) <K

o
< sup sup gl Y 8 (22)
“’ED(C’ﬁH) lw—z| < \C+1—ﬁ k=n+1
-2
whered := 2 and 0< 0 < 1.

[+1—5
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From the above we may choassufficiently large so that the lastterm in (22) is less than
% and fix such an n. Then, using relations (20), (21), the approximation properties (18) and
(19) are satisfied. This completes the proof of Lemma 3.3 and hence that of Theorem 1.4.
O

Remark 3.4. In a recent paper, Bayajt] answered our question about the existence of
universal Taylor series in the sense of Nestoridi€iy D with respect to every center

{ € C\ D. In fact he proved that the class ¢\ 5U(C \ D, {) is residual inH (C \ D).

His main idea is to approximate the unit circle by suitable polygonal lines and at the same
time he obtains an approximative sequefig with controlled growth for centers lying

on certain compact sets.
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